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The photon tunneling phenomena in the composite barrier of both positive index material and negative index
medium(NIM ) are analyzed. A negative barrier-length concept is introduced for the tunneling photon in the
NIM, which facilitates the analysis of a composite barrier. In addition to transmission and reflection coeffi-
cients, some comments on the post-tunneling position and stationary-phase tunneling time are given.
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A medium with both negative permittivity and negative
permeability—i.e., with a negative refractive index[negative
index medium(NIM ) or left-handed medium(LHM )]—was
introduced by Veselago as early as 1968[1], but it did not
receive much attention as it only existed in conceptual form.
Recently, it was demonstrated experimentally[2] and the
study of such materials has increased tremendously over the
last few years.

Most research investigating the theoretical aspects of the
NIM have dealt with the negative refraction phenomena at
the NIM and positive index material(PIM) interface, as can
be seen in the arguments since Valanju’s controversial work
[3–8]. Several works have been devoted to photon tunneling
through a layer of the NIM and characteristics of evanescent
waves in the NIM as well[9–14]. However, they mostly
considered evanescent photons in a homogeneous layer com-
posed of only the NIM. Recently, a few works have dealt
with a one-dimensional layered structure constituted by a
periodical repetition of PIM and NIM layers and have inves-
tigated the characteristics of photonic band-gap(PBG) struc-
tures[15–21]. In this Brief Report, the photon tunneling phe-
nomena in a composite barrier of both the PIM and NIM will
be analyzed and discussed by calculating transmission coef-
ficients, reflection coefficients, and the post-tunneling posi-
tion in a frustrated total internal reflection(FTIR) structure.
The composite barrier under consideration in this Brief Re-
port is constituted by a repetition of PIM and NIM layers,
but not limited to a periodical repetition of them.

Let us consider the FTIR structure in Fig. 1, in which a
photon is incident upon a media interface at an angleu
greater than the critical angle. It is well known that this two-
dimensional photon tunneling problem can be converted into
and analyzed as a one-dimensional electron tunneling prob-
lem by comparing the wave equation with the Schrödinger
equation [22,23]. This analogy will be used in this Brief
Report and the multiple low-index layers between two high-
index materials will be called a “barrier” following this anal-
ogy of electron tunneling through a potential barrier. It is
notable that at the NIM-PIM interface, the appropriate con-
tinuity conditions are those ofC and 1/ss]C /]zd, whereC
and s denote theE field and the permeabilitysmd of the

material in case of TE polarization photons and theH field
and the permittivity(«) in case of TM photons. Here the
discussion will be limited to a TE photon case. However, the
TM photon tunneling can be dealt with quite similarly. More-
over, the multiple PIM and NIM layers comprising the com-
posite tunneling barrier are all assumed to be impedance
matched(i.e., «= ±«2, m= ±m2) [8], and layers of the PIM
and NIM without impedance matching will not be
considered.

When a PIM barrier of lengthd s«=«2,m=m2d is located
between the PIM layerss«=«1,m=m1d, the transmission am-
plitude (the square of its magnitude corresponds to the trans-
mission coefficient) can be written as[22,23]

tPIMsdd = Fcoshsgdd − i
s12k

2 − g2/s12

2kg
sinhsgddG−1

, s1d

where k2=s«1m1v2/c2dcos2 u, g2=sv2/c2ds«1m1 sin2 u
−«2m2d, and s12= um2/m1u [24]. Here v and c denote the
angular frequency of a photon and its speed in vacuum. If the
NIM barrier of the same length is located instead and imped-
ance matched[8] with the above PIM barrier(«=−«2 and
m=−m2), the transmission amplitude can be written as fol-
lows [23] using the relationm2/m1=−m2/m1s,0d:

tNIMsdd = Fcoshsgdd + i
s12k

2 − g2/s12

2kg
sinhsgddG−1

= tPIM
* sdd.

s2d

The above relation thatm2/m1,0 implies that in the NIM,
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FIG. 1. TE-polarized photon tunneling through a composite bar-
rier of multiple PIM and NIM layers. Note that in this figure, the
arrows denote the flow direction of the Poynting vector.
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the effectivemass introduced by comparing the wave equa-
tion with the Schrödinger equation is negative. This means
that if an external force is exerted on the “electron”(analogy
of a photon), it moves in an antiparallel direction to that of
the force. This reminds us of the fact that the direction of the
wave vector and that of the Poynting vector are antiparallel
in the NIM.

We can see by comparing Eqs.(1) and (2) that tNIMsdd
= tPIMs−dd. That is, the NIM barrier is seen by the tunneling
photon as a PIM barrier of aneffective length of −d. To
check further the validity of this interpretation, we calcualte
the reflection coefficients for the above two cases. They can
be written as

rPIMsdd =
s12k

2 + g2/s12

ss12k
2 − g2/s12d + 2ikg cothsgdd

, s3d

rNIMsdd =
s12k

2 + g2/s12

ss12k
2 − g2/s12d − 2ikg cothsgdd

= rPIM
* sdd = rPIMs− dd, s4d

where we can find again that the NIM barrier is seen by the
reflected photon as a PIM barrier having an effectivelynega-
tive lengths−dd. Therefore, we can conclude that the photon
tunneling in the NIM can be dealt with in exactly the same
way as in the PIM(with impedance matched), only changing
the sign of barrier length or introducing a negative barrier
length.

The transmission, reflection amplitudes, and effective bar-
rier length of various configurations of layers with the NIM
and PIM are shown in Table I. We need to be careful in the
calculation when the plane-wave(propagating-wave) solu-
tions are assumed in the NIM, since in the NIM the direction
of wave vectorskd and that of the PoyntingsSd vector are
antiparallel. For example, in the high-index layer No. 2, the
assumed solution must bet exps−ikzd instead oft expsikzd,
and exps−ikzd+r expsikzd is assumed in the high-index layer
No. 1 instead of expsikzd+r exps−ikzd (wheret andr are the
transmission and reflection amplitudes, respectively). We can
see that the transmission, reflection amplitudes, and effective
barrier length are dependent only on the sign of the refractive
index of the barrier material.

The next problem is when the barrier is composed of both

the NIM and PIM(having the same magnitude of refractive
indices—i.e., impedance matched). After a similar analysis
using the electron tunneling analogy, we can obtain induc-
tively the following transmission and reflection amplitudes:

tsd1,d2, . . . ,dNd = Fcoshsgdef fd

− i
s12k

2 − g2/s12

2kg
sinhsgdef fdG−1

, s5d

rsd1,d2, . . . ,dNd =
s12k

2 + g2/s12

ss12k
2 − g2/s12d + 2ikg cothsgdef fd

,

s6d

where the effective barrier lengthdef f is given by def f
=o j sgnsnjddj [25]. These results could be obtained indepen-
dently using the above conclusion that the NIM barrier is
seen by the tunneling photon as a PIM barrier having a nega-
tive length, which reconfirms the validity of our introduction
of negative (tunneling) barrier length. This facilitates the
analysis of the composite barrier consisting of multiple PIM
and NIM layers by enabling us to convert the barrier into a
PIM barrier having an appropriate effective length. We can
see that it is the total sum of the “effective” length of the
distributed layers of the PIM and NIM that determines the
transmittance and reflectance of the overall FTIR structure.
Moreover, if the total sum of the physical length of the PIM
layers and that of the NIM layers are equal, the transmittance
of incident waves is always one and the barrier can allow
photons to tunnel through a much long distance[26].

Let us move our discussion to the post-tunneling posi-
tions. The average position where photon wave packets ap-
pear after the tunneling can be calculated using the
stationary-phase approximation[23]. The shift in thex direc-
tion can be obtained by

DxT = dU c

un1uv cosu

]fT

]u
U

v

, s7d

where fT=argstd, n1=Î«1m1, and d=1 s−1d when photons
are incident through a NIM(PIM) layer. The different values
of d in Eq. (7) originate from the different form of assumed
solutions for the incident plane waves. That is, if the layer is

TABLE I. Transmission, reflection amplitudes, and effective barrier length of various configurations of layers with the NIM and PIM.

High-index
layer No. 1

Tunneling
barrier

High-index
layer No. 2

Transmission
amplitude

Reflection
amplitude

Effective
barrier length

PIMs«1,m1d PIMs«2,m2d PIMs«1,m1d t r d

PIMs«1,m1d PIMs«2,m2d NIM s−«1,−m1d t r d

PIMs«1,m1d NIM s−«2,−m2d PIMs«1,m1d t* r* −d

PIMs«1,m1d NIM s−«2,−m2d NIM s−«1,−m1d t* r* −d

NIM s−«1,−m1d PIMs«2,m2d PIMs«1,m1d t r d

NIM s−«1,−m1d PIMs«2,m2d NIM s−«1,−m1d t r d

NIM s−«1,−m1d NIM s−«2,−m2d PIMs«1,m1d t* r* −d

NIM s−«1,−m1d NIM s−«2,−m2d NIM s−«1,−m1d t* r* −d
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made of a NIM, the solution becomes exps−ikxx− ikzd
+r exps−ikxx+ ikzd instead of expsikxx+ ikzd+r expsikxx
− ikzd as in the PIM, so as to make the incident energy flux
direction in the NIM the same as that in the PIM.[Here ±kx

denotes the wave vector along thex direction andkx is taken
to be non-negativeskx= ukxud for simplicity in this discus-
sion.]

First, let us consider the case where photons are incident
through a PIM layer. Using Eqs.(1), (2), and (7), we see
fT

NIM=−fT
PIM and, thus,DxT

NIM=−DxT
PIM. If the shift in the

conventional case(no NIM layer is involved) is taken to be,
say, DxT

0 (which is positive), we can seeDxT
PIM=DxT

0 and
DxT

NIM=−DxT
0. We can infer this final result on the post-

tunneling position using the concept of negative barrier
length, as is shown in Fig. 2(b). A barrier length that is nega-
tive can be interpreted as the tunneling direction is reversed.
The “movement” of the photon through a barrier is com-
posed of two-directional components—i.e., inx andz coor-
dinates. Since only the tunneling direction is changed, the
z-directional movement becomes reversed and the
x-directional one is conserved, with which we can draw Fig.
2(b) and obtainDxT

NIM=−DxT
PIM.

Next, we will move to the case where photons are inci-
dent through a NIM layer. Using the results shown in Table I
and Eq.(7), we can get the same relation discussed above:
fT

NIM=−fT
PIM and DxT

NIM=−DxT
PIM. However, due to the dif-

ferent value of d in Eq. (7), we get DxT
PIM=−DxT

0 and
DxT

NIM=DxT
0. These discussions are summarized in Table II

and can be arranged as follows: while the post-tunneling po-
sitional shift is in the same direction as the parallel(to the
interface) component of the incident energy flux when the
incident and tunneling layers are of the same kind of material
(i.e., PIM-PIM or NIM-NIM), it is in the opposite direction
when the layers are of different kind of media(i.e., PIM-
NIM or NIM-PIM ).

In a composite barrier,fT is given by

fT = tan−1Fs12k
2 − g2/s12

2kg
tanhsgdef fdG , s8d

and becomes zero if the total sum of the physical length of
the PIM layers and that of the NIM layers are equal. In this
case, the post-tunneling position(along thex direction) is
equal to the position where the incident photon hits the bar-
rier, and the transmittance of incident waves is always 1
regardless of the physical length of the barrier. It follows that
we can control the post-tunneling position of photons by
changing the physical length of the PIM and NIM layers.
Moreover, the post-tunneling positional shift is dependent on
two factors: the kind of material comprising incident layers
(through which photons are incident) and the effective length
of the tunneling barrier. The shift is in the same direction as
the parallel(to the interface) component of the incident en-
ergy flux (i.e., in the positivex direction in our configura-
tions shown in Fig. 1) when the incident layer and the tun-
neling barrier (a tunneling barrier is said to be made of
effectively positive or negative material depending on
whether the effective length is positive or negative) are of the
same kind of material(i.e., PIM-def f.0 or NIM-def f,0),
while it is in the opposite direction when the incident layer
and the tunneling barrier are of different kind of media(i.e.,
PIM-def f,0 or NIM-def f.0).

One will be tempted to calculate the tunneling time
[22,23] using the same stationary-phase approximation. If its
calculation is performed when, for example, photons are in-
cident through a PIM layer and hit a PIM barrier, the tunnel-
ing time can be written as

tT
PIM = U ]fT

PIM

]v
U

u

+
n1

c
DxT

PIM sinu. s9d

The tunneling time with the NIM barrier is

tT
NIM = U ]fT

NIM

]v
U

u

+
n1

c
DxT

NIM sinu

= − U ]fT
PIM

]v
U

u

−
n1

c
DxT

PIM sinu

= − tT
PIM , s10d

and the tunneling phenomenon seems to violate causality.
However, we have to be careful when dealing with the dy-
namic properties of the PIM-NIM interface. As was already
shown in several studies[7,27] that report time-dependent

FIG. 2. Post-tunneling positions for the cases where the tunnel-
ing barrier is made of(a) a PIM layer and(b) a NIM layer. Note that
in these figures, the arrows denote the directions of wave vectors.

TABLE II. Post-tunneling positions of various configurations of
layers with the NIM and PIM.

High-index
layer No. 1

(incident layer) Tunneling barrier
DxT

(positional shift)

PIMs«1,m1d PIMs«2,m2d DxT
0

PIMs«1,m1d NIM s−«2,−m2d −DxT
0

NIM s−«1,−m1d PIMs«2,m2d −DxT
0

NIM s−«1,−m1d NIM s−«2,−m2d DxT
0
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simulation results, the interface acts as a strong resonance
scattering center which temporarily traps the wave before
reemitting it. This means that there exists a time lag between
the wave hitting the interface and the medium responding
with a negative index. After such a transit time, the wave
reorganizes itself and starts acting as expected from the
steady-state solutions. The stationary-phase approximation
fails to estimate this transit time and, thus, cannot be applied
to the calculation of tunneling time through the NIM barrier.

In summary, the photon tunneling phenomena through a
barrier of NIM, PIM, and composite layers of both were
analyzed. We find that the tunneling in a NIM can be de-
scribed the same way as in a PIM by introducing a negative
barrier length. This facilitates the analysis of a composite
barrier of multiple layers of both PIM and NIM. We only
need to calculate the effective barrier length and convert the
composite barrier into one composed of only a PIM having
the appropriate effective length.
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